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Considered is a problem of optimum control under the condition of rnlni~~ 
expected decay time of a transient Process. A method is described for 
applying the Liapunov function to this problem [ 1.2 1. Assumed statement 
of the problem is generalized to include some problems of optimum appli- 
cation of high speed action on systems subject to random disturbances. 
Discussed are approximate methods for synthesizing optimum control. 

Author notes that be discussed the theme of this work and the methods 
of solution of the considered problems with N.G. Cbetaev who gave him a 
number of valuable suggestions. Especially, detailed remarks were made 
by Cbetaev regarding the application of the Liapunov function to the 
problems of the investigated systems subject to random disturbances. 

1. Statement of problem. Let us consider the system described by 
the equations 

+ Ax+Bu+cy (1.1) 

where x is an n-dimensional vector of phase coordinates of the system, 
A, B are n x n-matrices, v(t) is a random scalar function, II is the n- 
dimensional control vector. For the given initial conditions x0, qo, t, 
it is required to derive the rule for choosing control Uo which ensures 
minimum tinre of decay for the transient process x(x0, q,,, t,,, t, 9, u) 
in system (1.1). Ikpending upon the character of information about the 
process action, several versions of formulation are possible. 

Let us denote by g(8) the realization of the rsndom function q(t) for 
t s 9< t. A great nunber (almost all) realizations g(8) we shall de- 
note by Q(t). 

Definition 1.1. Let us consider the operators tdt, g 1 which caspare 
(for fixed t z t,)with g(9) the vectors u. l'he totality U, of operators 

a2 
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III t, g 1 (to 5 t < -, g = T o(t) we shall call t-control. 

Vector-function u(x, 7, t) = Us which conpares (for fixed t) with 
vectors x E G and numbers q E H the vectors u, we shall call x-control 
in the region G x H. 

Let us denote 

II y II = tyla+. - * + Y,” P. II Y IIK = <y,“+ * * - + Yk2p 

Definition I. 2. I_& there be given a rusnber c > 0, a natural number 
k< n and the initial conditions x0, qO, tO. Let us agree to call U, 
(t-control) e-permissible on lnl, . ..) xh) for the initial conditions 

*a' 901 to' if these conditions are satisfied: 

1) norm Ilull satisfies inequality 

II44 gIlI< 1, t = ito, 00)s &Tea (1.2) 

2) inequality 

is satisfied, where the symbol pE II,, k, c, x0, qor tO, tl denotes the 
probability of inequality 

for t > to along the random solution x(t) of system (1.11, caused by tlrs 
random functions q(t) and u(t) = u[ t, q(8)]. lhe set of r-permissible 
t-controls (for given conditions k, C, x0, qo, to) we shall denote by 

Mtl k, CJ x0, qo# tg 1 l 

'Ihe meaning of Definition 1.2 is as follows: r-permissible t-control 
(totality II, of operators u [t, g I) determines the rule for choosing 
the u(t) control on the basis of information about realization g(8) of a 

random function q(t) for to 4 Z+ < t, whereupon this control ensures the 
decay of the transient process according to \I x(t)\/ k up to E > 0 with 
probability arbitrarily close to unity for sufficiently large t. 

Definition 1.3. Let there be given a number e > 0, a natural number 

k < n, regions Go and G of the phase-space I xf and a set of numbers H. 
Function U,, the x-control in the region Gx H, we shall call (-pennis- 
sible on Ixl, . ..) %k) for initial disturbances x0 from region Go, if 
the following conditions are fulfilled: 

1) function q(t) may take values only from H for all realizations 
g@k Q(t), to 5 t < a; 
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2) solutions of system 1.1 (for u = u[ n, q, t 1 1 with the initial 
conditions x0 E C, for all realizations I) 

t> to; 

3) norm I[ u I[ satisfies condition 

ll~, 7, till\< 1, seGG, 

4) inequality (1.3) is fulfilled (where 
“()& c O, 9 E H, whereupon the trajectory 
caused by the control u(t) = u(x(t), T?(t), 

= g(8) remain in region G for 

TjEZH, t > t, (1.5) 

U, is replaced by U,) for all 
%(% 0’ Ilo> to’ t, 9, u) is 
t). 

‘lke set of t-permissible x-controls we shall denote by MI1 k, c , Co, 
Cl. 

(Note8 1.1. In those cases where there can be no misunderstanding we 
shall use abbreviated terms and notations, omitting complementary 
characteristics (e.g. permissible control instead of E -permissible t- 
control, TC U 1 instead of T [ Ut, k, 6, x0, qo, to 1 etc. ). 

f .2. Admissibility conditions for Ut(or Uz) must include a require- 
nest for the existence of solutions of system (1.1) for u(t) = u [ t, g 1 
or u= u[x, q, t I for almost all realizations q = g(8). In the follow- 
ing, a class of functions g(9) of a fairly general nature (discontinuous 
and 6-functions g(9)) are sometimes permitted. Accordingly, we shall 
consider as solutions x(t) also functions of a fairly general nature, 
the class of which we do not limit in the formulation of the problem. 
Therefore, in Definitions 1.2. 1.3 the requirement for existence of 
solutions is not stated even where It is necessary, and must be invest- 
igated separately, depending on the permissible class of solutions. For 
the same reason the proofs presented are not too rigorous assuming that, 
since each time the class of functions q(t) and r(t) is investigated, 
the appropriate calculations can be substantiated. 

1.3. Let us assume (unless stated otherwise) that for each realization 
q = g(a) the process of control is terminated at that moment t = tc [ g ] 
when the point on the corresponding trajectory x(t) falls for the first 
time on the surface 11 r 11 k” t. Therefore, in the following one cad fora- 
ally assume that for such realizations equalities g(t) = 0, u(t) = 0. 
x(t) = 0 are fulfilled for t > tc [ g 1 and the quantity p[ tl - p[ U, 

L 6. x0’ ‘loa to, t] is a monotonic non-increasing function of time t 
for all t > to. 

f. 4. Definitions 1.2 and 1.3 include also the case of transfering 
x(t) into the r-neighborhood of the surface llxl + . . . + t,r, = 0, if in 
system (1.1) we replace the variables 1 Xi) -P ( yi 1 (whereupon yl = llxl + 
. . . + I,,%,,) and insert Definitions 1.2, 1.3 k = 1. ) 
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Definition 1.4. lhe permissible control UO(U,O or Uko> we shall call 
optimum if 

T [U“] = min (T;[U] for CT E M) ( w 
In this article the term .optimum problemn is understood as the 

problem of determining the minimum of (1.6). This problem belongs to the 
class of problems in optimum control in the presence of a random signal 
at the system input [ 5,6 1 ; here, however, we have some characteristic 
peculiarities connected with the nonlinearity of operators u[ x, q, t 1 , 
u i. t, gl and also the fact that the problem is essentially nonstationary. * 

(Notes f .5. The problem is obviously generalized for the case of 
minimizing the functional 

0 WI =jopV’. k, EP 20. rla. lo. tl L [z W. r) WI dt 
t. 

1.6. Investigated analogous problems may be formulated for the case 
of fastest transfer of the x(t) trajectory into ~-neighborhood of e 
random motion zi = vi(t) ii = 1. . . . . n). 

1.7. Unless stated otherwise, we shell consider only random functions 
q(t) describing e random (Yerkov) process without consequences 1’7 I. ) 

2. Ibe problem of the existence of optimum eontrol. We shall 
prove the existence of optimum control UP for a particular case of 
system (1.1). Given an equation 

q(n) + u$c/+-1) $. . . l + &Jl = EL;(t) + q (1) (2.1) 

.where the function v(t) describes a random process of the following type: 
q(t) is constant 9 = ~~(1 = 1, . ..) I) on each semi-interval kr 0( t < 
(k + l)ro (rO> 0 - const, k = 0, 1, . . . ), the probabilities of transfer 
11 j + 7 1 for t = k r0 are constants ij 1, and also 

T[If!H 1 (t=1, . . ..m) (2.2) 

Unless otherwise stated, everywhere in the following it is assumed 
that the roots X,(i = 1, . . . . n) of the characteristic equation 

~A--q;=O 

satisfy the inequality 

ReXi<--_ (6 > 0 - const) (2.31 

l It should be noted that the problems of optimum control ia the pre- 
sence of random disturbances are treated somewhat differently in 
References [ 1-7-18 1. 
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i f 
lhe optimuu problem for Equation (2.1) at k = n, 6 = 0 (xi = xlti’ ‘I, 
1) and for the conditions (2.2) and (2.3) we shall call problem A. 

Leuur 2.1. For problem A there exists a permissible control U, regard- 
less of the initial conditions za, ‘lo, tu. 

(Note 2.1. As permissible realizations u(t) of control q C t, g 1 we 
shall consider In the present section place-nise smooth functions, per- 
mitting only discontinuities of the first kind at isolated values of t, 
as permissible solutions x(t)-continuous functions, satisfying Equation 
(2.1) for all t different from points of discontinuity q(t) and o(t). 1 

Proof of Zeam. According to References [ 8,9 1 for the problem of 
optimum response for system (2.1) under conditions (2.3) q(t) = 0 and 
limitation 

11 u (Q III\< (1 - q) (Ui = 0, i - 2, . . ., 4 (2.4) 

there exists 8n optimum control u1 = u,*(t), regardless of the initial 
conditions x0, to. lhis control (piece-wise constant function u,‘(t)) 
brings the trajectory x(t) of Equation (2.1) to point x = 0 (x, = 0, 
xi = xl(i-:l) = 0) at some tims t = to + T*. Obviously, the aperators 

IC [t, g] = {ul* (t) - g(t), . . ., 0) for t, < t <t, + T 
u [t, g] = {- g (t), 0, . . . , 0} for t > T’ + t, 

(2.5) 

constitute the permissible control U,* whereby 

T [U,‘] = T’ (2.6) 

Theorem 2. I. For problem A there exists an optimum control UP, re- 
gardless of the initial conditions x0, vu, to. 

Proof. Given are initial conditions x0, ‘lo, to, whereby with no loss 
of generality t0 E, I 0, r 0 I. According to Leurua 2.1 there exists a per- 
missible control U,+. 
U,‘W = 1, 2, 

Let us consider a sequence of permissible controls 
. . .I, for which the following condition is satisfied 

up) = u;, T [ ?I@“‘] > T [ @+‘)I, lim T [Uik)l = T” for k + 00 (2.7) 

and there is no permissible control U, for which 

7’ [U,I < To (2.8) 

We shall show that there is a permissible control Uto satisfying the 
condition 
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T [U,o] = T” (2.9) 

Let us denote by girt%) (r = 1, 2, aeev I = II, v-a, I’, o< a< r~,, 1 
the realizations q(t), and by pyr probabilities,of glfS Let us put in 
order the set fgzl I Now, let gtr precede gIc_” , if r’.> r; for fixed rr 
realizations g tr are ordered &finitely on 1 = 1, ..*, 8~~. Gnsider trip- 

lets I[g, u, Tllf composed of n&rs 

T: (P - 1) r5 < tO + TI’ \< qJ 

and functions 
g1’ 01, Ul? (1) (go <t < t5 + T,‘) 

We shall state that the triplet ( gr U, Tk Ir belongs to U,“‘, if 
y = yt, g*'f = q 'ftl snd the trajectory xfxgP yv t,, t, glr, 
rz t, glf 1 fa 1s for the first time on x = 0 for t = to + T,‘. ‘Ihe set 
of all triplets {g, u, TIIr belonging to U,(‘) we shall denote by Qk. 

Qk does npt contain simultaneously two tri@ets f g, u, TIl’ amd 

1 g, u, T&p' , where T’> T and glr(t) c glpr .(t) for to 6 t < to + T. 
Inequality 

&V = 1, (2*10) 
@f 

is valid where the sum is taken along all realizetions gtP contained in 
triplets {g, U, TI,’ E Qk. Also, 

T [lGk’f > r: pl% for Em [r, p~‘Tz’) < T” for k .-. cm (2. $4) 
WI W 

Let us pass now to the construction of UP. Beged oti the properties 
of Qk sets we can derive a diagonal subsequence (for which we till use 
the prexious notation but rer?umbt?red) satisfying the following conditions 

( 1) ‘Ihere is a subsequence I glr 1 t such that the first s terms of this 
subsequence are contained in all triplets Qk, beginning with k = s+ 

(2) Equality 

z pf = 1 (2.12) 

is sstisfied in w&h the sum is taken over all elements af the sequence 
1 gi’li described in condition 
and starting with some n&r 

(1). (A CWM may arise when I gtr lk is finite, 
s, all Q& contain a finite n&r of reali- 

zations glr, For this case, the follow&q disctissions are simplified. 1 
Let us denote by (u,‘), cont.yijfunctions correspnding to glr from the 
seq=nce ( glrjk in control Ut 
in the appropriate triplets m Q’ 

and by (Tlrlk the numbers T contained 

sphere in space L 2 
La Utilising low density f 10 3 of a unit 

of function uCt1 Ct, 4 t < srg , s = 1, 2, . .,) for 
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fixed s, the limitation of each sequence (TIrJk(k = 1, 2, . ..). and re- 
peating the argwnents of Reference 141, one can derive a diagonal sub- 
sequence {ok] (for which again we shall use the old n-ration) for 
which the following condition is satisfied: 

lim(T[)k = (Tlr)O for k-+ 00 (2.13) 

and the sequences (u,'), for k -)I 00 slowly converge towards the limiting 
measurable functions (utr)* on the intervals to< t( tg + (T1'),. In 
addition, from the condition (2.11) and (2.l.2), it follows that 

(2.14) 

A limited transfer along functions (ul*)k slowly converging to .(utr)* 
is possible in integrals defining x(t) for system (2.1) according to the 
Cauchy formula for inhamogeneous linear equations [ill . Therefore, the 
trajectories x(t) of Equation (2.1) generated by the functions (ulr)* 
under the corresponding glr(t), arrive at the point XE 0 for t = to + 
(Tlr),. 

'Ihis fact, together with conditions (2.12) and (2.14), proves that the 
totality of operators u+[f, gl defined on realizations gtr from the sub- 

sequence IglrIk (as well as on segments g,'(a) (a(![ t,, tl, t( t + (Tlr), 
of these realizations) which compare with these realizations the 'func- 
tions hat’(t))* = u1 
(TI’), (ui E 

for t .< to + (Tlr), and u = - q(t) for t > te + 
0 for i # l), defines the control U,* for which 

T [IV,‘] = To (2.15) 

The controlUt * is defined only in the class of measurable functions 
u(t) = u*[ t, gl. 

Now, for the proof of the theorem it is sufficient to show that there 
exists a control U'p also satisfying (2.15) but already in the class of 
the piece-wise continuous functions u(t) = u" It, g I. 

For the proof of this assertion one should, based on the results of 
Reference 19 I, substitute in turn on the intervals t0 < t ( rrg b = 1, 

2, . ..I for each realization glr(t) the measurable functions by’(t))* 

into the partially constant functions blr(fJo, 1 (u,‘(t))” 1 < 1, which 
after integration, according to the Cauchy formula for solutions (2.1), 
on each interval, yields 

r'~~ < t < (r' + l)r,, (r + I)T,, < t < t, + (Tl)O (r’ = 0, . . . . (r - 2)) (2.16) 

the sm result as the substituted functions. The existence of such 
partially constant functions follows fran the solubility of correspond- 
ing L problems 112 1 on intervals (2.16) in partly constant functions 
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tUlw)o, if these problems are soluble in measurable limited functions 

(u,'(t)* on the smne intervals. Ihe theorem is proved. 

(Note 2.2. Analogously, based on the lemma from Reference [ 13 1 (p. 
575) one can prove the existence of optimum control Uto for which the 
control functions assume only two values u = +l and II = -1.) 

3. Necessary conditions of optimal control. In this section 
the necessary conditions are derived optimising II, for a problem similar 
to A. Ihis problem is msmoothed* by introduction of an additional random 

quantity f with a small dispersion 02. 'l'he conditions for optimization 
of A can be obtained for the optimization conditions for this problem by 
letting l + 0 and o2 + 0; substantiation of this limiting transfer is, 
however, beyond the scope of the present discussion. Note that the 
analogous introduction of 6 may be applied for derivation of optimiza- 
tion conditions in a stable system in the absence of the random disturb- 
ance q(t), i.e. for the ordinary problem of high speed response. Consider 
the equation 

2,(“) + uldn--l) + . . * + Gl% = 2.J (Q + ‘1 (t) + ES (t - 4)) (3.9 
(9 = zl+‘); i = I, . . . , n) 

where [ is a random independent quantity with a normal distribution 

MIf1 = 0, M(t1 = cr2 (here and in the following the symbol M(a) de- 
notes the mathematical expectancy of a). For Equation (3.1) we shall 
consider the following problem in optimization: 

Probler B. It is required to determine the optima c-permissible t- 

control Otol IP[t, gl] on the coordinate z1 under the condition that in 
the control process the value of the random quantity C$ remains unknown, 
and consequently, as in Definitions 1.2 and 1.4, the control u" [t, gl 
is based only on the information about realization g(8) of a randan 
function q(t) for8 4 t (q(t) function is described in Section 2). 

In the present section we shall assume that for all realizations g 
the operators u" I t, g 1 are defined for all t > t,,. &n-rate, con- 
sequently, the realizations g(8) in each of the intervals 

rro<\(< (r+ qr, (r = 0, 1, . . . ) (3.2) 

as follows. In each interval 0 < 8 < r. let all realizations q = g(S) be 
renumerated by indices I, = 1, . ..) I and denoted by gl,(8), and corres- 
ponding probabilities denoted by pl,,. Each g1a(8) generates in the in- 
terval r,, < 8< 2r, n-realizations q = g(8) which we will denote by the 
symbols gzoz (a) (I, = 1, 

t 
. ..) r; I, = 1, . ..( a). By induction let us 

renumerate g 8) in all intervals of (3.2). I.et the initial value be 

&,U 0, ro) andTo = gzo’ (to), then the probability 
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Pcq, 1, c # x0, ‘lo* to, tl= p(t) 
of inequality 1 x1(x0, q 
in the given case is P’ 

to, t, ‘1, dl>E for tc(FQ,, (F+ lh,) 

ca culated from 

(3.3) 

P ItI= 2 Pl,‘l*...lr 
( s 

1 - c (2n)-“~(t)-’ [exp -(L-C IZo’, Z1... 
(ll...lr) 

Zr, t1)” (2T” w1q 
--I 

where the swmsation is overall Z,, . . . , Zr (Zi = 1, . . . , a) for fixed 

10' , and the quantities y and t[Zo’j Z,, . . . . 
the equalities 

I,., t 1 are determined by 

r2 (t) = &z1,2 (t - t,) (3.4) 

c [IO’, I1 . . . L t1 = 2 hlj (t - to) xjo + 
j=l 

r w+lk 

'#Z ,$ hln(t 
- 81 Iu" Ia, gz,%...lJ $ gLLz,(~)l a + 

. 

+ I’ h, (t - 8) [u” 18, a,tl + BI; @)I a + 
t, 

(3.5) 

In the equalities (3.4) and (3.5) functions h..(t) are the elements 
of the fundantal matrix of solutions for the h&geneous system (3.1) 
(hi*(to) = S,j)* ~%US th opti;lllal problem B is reduced to minimization 
of c he functional 

T Izzt”] = i p It] dt = min 

t. 
(3.6) 

where the probability p[tl is determined by the equalities (3.3) to 
(3.5). ‘Ihis problem can be solved by the usual methods of variational 
calculus. In particular, let 8aI t,gl be the variation of control ult,gl , 
permissible under condition (1.21, equal to zero for all realizations 
g(8) except the marked realization g*(a) for which it is also equal to 
zero everyrhere except at some small interval (t * - 4, t* + a), located 
fully inside the interval rro< t < (F + 1) ro. At the se time we shall 
assune that in the described n-ration above the segment g*(8) in in- 
terval*6(rrg, (F + l)r,,) is denoted by gz;li_ . . . 1,‘. Then the sign 
of the variation 8 T will be defined by the sign of the expression 
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f(P) sign 6ul (t3 = P.7) 

= sign 6~1 (f) [ \ pl;,lt~,...,~,~ W,‘, 11’ ,...,Z,‘,t)h,,(t-tpzt+ 
f’ 

WhWt? 

F I&,‘, . . . t 1,‘s &+I, . . ..zk.t]= -‘-’ 
Jacob x (3.3) 

x j exp --(i--tI’“‘....?~~~l;l:l?.‘.‘lk.rl)’ [r.-f[z,‘,...,z,‘,~,+*,...,~rr,~]~~ 
-I? 

fork r. < t < (k+ 1) '(). 

let us consider function.f(t*), defined by the equality (3.7). For 
interpretation of this function let us consider the system (1.1) which 
is equivalent to Equation (2.1), where consequently r = I zIr . . . . x,1 = 

I$’ l *.* x1 (n-lj: 

0 1 o... 0 0 0. *. 0” 

0 0 1... 0 0 0. * . 0 
A= . . . . . . . . . , 

0 0 o... i’ 
B = . 0 

d iI: : * 0~ 

- % -6,1 . . .--a1 0 1 0.. . 0 

According to known properties of linear systems, 1111 functions 

h,i(t- t*) (i = ', . ..) n) of argument t* constitute a particular solu- 
tion of the system 

iQ/dt' = -.A’cj (3.9) 

conparable to system (l.l) (A* is the transposed matrix A). Consequently, 
function h, (t - t') may be considered a scalar product of the solution 
vector f hli?t - t*)j and the vector b is the first column of matrix B. 
Applying the rules for differentiation of integrals in (3.7) with respect 
to t" and taking into consideration the conditions tcli(O) = 0, h,(O) = 1. 
for i f 1, we verify that the function f(t*) may be considered as a scalar 
product f(P) = (b x $(t*)), where #(t*) is the solution of the system 

@ 
z- - -A*#+d(t), d (t) = { - pF (t), 0, . . . , 0) (3.10) 

Men T[ UPI is minimum, the variation should not be negative, con- 
sequently the following fact may be established. 
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Theorem 3.1. At each interval k r o < t < (k + 1) r 0 the optimum con- 
trol u It, g 1 for each g(a) in problem B satisfies the condition: the 
operator u" [t, g 1 is such that the quantity 

- ul” It, el f PI = - G U, ~1 (be+ (9) = max (3.11) 

where Q(t) is the solution of system (3.10) (for t = t*). 

(Note 3.1. Condition (3.11) corresponds in the case considered to the 
principle of maximum 14 I.) 

In passing from one realization to another and in passing through the 
critical values t = k ro, the solutions $(t) (3.91, defining according 
to (3.10) and (3.11) the optimum control u [t, gl, deviate. However, one 
can see from formulas (3.3) to (3.8) that the deviations of y!dt) in 
passing through the point t = k r. are subject to the rule of discontin- 

uity: let G1,, . . ., lkt (t) (the defining solution on gloR ... Ik, for t 

in the interval (k r o, (k + 1) r *) and fil 
0'1 . . . . I&', l&+1 (t)) be the 

defining solutions on gIo,., 
lk’lk+ 1 for t in the interval . . . . 

((k + 1) r. (k + 2) r o); then the following equality holds* 

m 

(Note 3.2. The method described for smoothing the optimal problem 
lends itself to the application of one of the direct methods for solu- 
tion in variational problems, for example, the method of fastest descent 
for calculation of optimum control. The situation is analogous to that 
occurring in solutions by direct q etbods of the ltnonn optimal problems 
(see for example [ 5.6.14 1 ). However, it should be noted, that in mini- 
mizing the functional (3.6) the resulting computational difficulties are 
quite considerable. 

Verification of the existence of a permissible and optimal control and 
the construction of optimum control in concrete cases is difficult. The 

l It rna~ be considered that this discontinuity is defined by terms of 
the S-function type in the right hand sid8 of (3.10). corresponding 
to the transfer matrix qi + vi. For the case of continuous process 
q(t), this fact causes the corresponding appearance of the continuous 
members in the right band side of (3.10). It is worth noting that the 
appearance of d(t) in (3.10) is due here to the introduction of 4‘ and 
for u* + 0 function d(t) -, 0 outside the neighborhood of point x = 0. 
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possibility of applying the method of Llapunov functions is investigated 
in the following section [ 1,2,15 1. The application of this method to 
control problems was developed by Chetaev. In particular. the problem of 
parameter selection in a stable system for optimum high speed response 
was solved for linear systems by Chetaev in References [ 2,15 1 based on 
Liapunov quadratic form functions. In addition. Reference [ 15 I derived 
concrete evaluations of decay times for transient processes UP to the 
given quantity c > 0 based on the characteristic numbers of the Liapunov 
function u of quadratic form and its derivative dv/dt, on the strength of 
the equations for a disturbed motion.) 

4. Application of the method of Liapunov functions to the 
optimal problem. In this section a generalization of Liapunov functions 
is described which permits the application of these functions as aPPa- 
ratus for the investigation of high-speed response problems in control 
systems, including the presence of random disturbances. The application 
of the second method of Liapunov to problems of system response in the 
absence of random disturbances is described in Reference 19 1. Note that 
the surfaces of the optimum level of Liapunov functions considered in 
Reference [9 I are apparently isochronisms in the sense of Reference 
[ 16 1. The author considers it his duty to point out that the discussions 
given in this section overlap in some essential respects with the re- 
searches of Repin, who has worked out a msthod for solving optimal 
problems on the basis of the methods of dynamic programming and derived 
a general partial differential equation for the minimizing functional. 

I& us first introduce a nwnher of definitions corresponding in our 
case to the classical definitions of the second method of Liapunov [ 1,21 . 

We will consider functions u(x, 9, t) of coordinates zi(i = 1, . . . ,n 1 
for a random value q and time t, not assuming them to be continuous for 
all arguments. 

Definitions 4.1. We will call the function A, 7, t) positive de- 
finite in region G x H for t > t,,, if the following condition is satis- 
fied 

v (z, rl, t) > 0 for XEG, x$=0, ~EH, t>,&, (4.1) 

4.2. ‘l’he function u(x, 7, t) admits an infinitely small higher limit 
(in G x H for t ) t,,), if there is a constant L satisfying the condition 

v(x7qJ)<u”II for XEG, x$=0, ~EH, t>t, (4.2) 

4.3. In substituting in u(x, ‘I, t) for xi and 9, the coordinates 
xi(t ), the solution of system (1.1) (corresponding to some control 
Ut(orUz) and the values of the randomfunction q(t), one obtains the 
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randcsn functions of time u( t 1. Lilt us assune that for the mathematical 
expectancy M( u (t 11 of this function one can cqute the right deriva- 
tive Bf( ~1. 

We will say that the function V(X, q, t) has a negative definite 
derivative Cowl u 1 /dt (in the region G x H for t > to 1, if the inequality 

dM{v}/dt\<-- for CZEG, ?EH, t3to (6 = const > 0) (4.3) 

is satisfied and if (4.3) can be integrated, i.e., 

M @ @)I - M iv @,,)l < - 6 (t - to) (t 2 43) (4.4) 

The last restriction is necessary, since some more general functions 
are allowed as Liapunov functions &,I), t 1 and solutions n(t) than 
those from the classical cases of the Liapunov theory. 

4.4. Ihe function u(x, q, t ) satisfying the conditions of 4.1 to 4.3 _ 
we shall call the generalized Liapunov function (in the corresponding 
region). 

(Notes 4.1. In this section we will consider only optimal problems 
forr = 0, k= n, C=l --a~< xi<oo). According to late 1.3. each 
realisation of the tfajeotory x(t) is defined by the given control Ut(or 
Us) only for r # 0 (for E = 0). and after reaching the point I = 0 for 
t = t* we have x(t) B 0. Accordingly, we will assume that for L = 0 
LiaRunov functions are not defined and that each realization of the func- 
tion v(t) after reaching the corresponding realization of solution r(t) 
at point x = 0 is continued In such a manner that dv/dt = -1. 

4.2. In what follows we will consider only those cases when the random 
solutions x(t) of system (1.1) have for all t > to a finite disRersion 
uniformly bounded at t > t,.,. In consequence of (2.3) this condition is 
satisfied, for example, if functions q(t) and a[ t,ql possess a finite 
dispersion uniformly bounded for t ) t,). 

Lemma 4.1. If for a given control Ut(or r/, 1 for the system (1.1) we 
can give a generalized Liapunov function u(x, 9, t), then the control 
U,(or U,) is permissible.* 

Proof. he to imposed conditions, x( t ) has bounded dispersion. Conse- 
quently, u(t) due to the infinitely small higher limit (4.2) will also 
have a bounded dispersion D(t) < D = const. for all t > to. Because 

l See Note 1.2. The control tl, is here assumed such that { r(t). ?j (t) 1 
is a random process without after-effects. 
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V(X, 17, t) is positive definite (4.1), the probability pit] of inequal- 
ity x(t) f 0 coincides with the probability of inequality u(t) > 0. From 
the condition (4.4) according to Chebyshev's inequality 17 1 (p. 187) we 
conclude now that the probability p[ t 1 is of the order l/t* for t + oo. 
This proves the convergence of integral (1.3). 

Definition 4.5. 'lhe generalized Liapunov function u"(x, q, t) will be 
called optimal if the condition is satisfied that 

mincEM(v"}/dt = -1 
(I 

(4.5) 

at each point x, q (or correspondingly at each instant t of the control 
process). 

Tkeorer 4.1. Let system (1.1) possess an optimal control U," (for UP 
for all initial conditions L, 7, 
function &, q, 

t > t,). lhen the positive definite 
t) = T[ U, n, 0, x, q, tl satisfies (4.51, whereupon 

the minimum is reached on the optimum control Vxo (or Uto). 

Proof. Impute dM( u l/dt for the function u = TIU" 1 at optimum 

control U" (at the point I = z,,, '1 = ~a, t = t,). Quantity p[ U, k, C, 

x(ts + r), ?j(t, + r), t, + r, 
is a random function t, 

tl for fixed Cl and for constant t g to + r 
the statistical properties of which are deter- 

mined by z(t) and q(t). By definition of MI u (t)] we have 

=M{ i ~IU,n,O,+(t,+At),rl(t,+At),t,+At,t]dt}- 
t.+At Q) 

- P[U,n,O,2,,?o,to,tldt s 
t. 

and in view of the known properties of the random processes without after 
effects [7 I we have 

M { i 
t,+At 

P[U, n, 0, 5 (t, + At), q (t, + At), t, + At, tl dt} = 

00 

i.e. 
= 

5 P iv, n, 0, x,,, q,,, to, tl dt 
t.+At 

(?)a = (&[Y PlU,n,0,2,*$,,t,,tldt]) =-I 
t’ 1’== t. 

(4.6) 

since when x,, f 0 on some sufficiently small interval (t,, to + At) 
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limp [u, n, 0, zo, ~0, to, t] = 1 np~ At -+ 0 

Let us assume now that for some permissible control fJ at separate 
times of control dM{ v 1 /do < - 1. Then on some interval At the in- 

equality Mi u (t, + At)) - MI Y (t,)) < - At would be satisfied which in 

consequence of (4.6) contradicts the assumption regarding the optimum 

of control U”. 

The obtained contradiction along with the equality (4.6) proves the 

theorem. 

Theoren 4.2. Let there be given a generalized optimal u(x, 7, t) 
Liapunov function for system (1.1). If for some control U”<Up or Cl,” ) 
this function satisfies the condition dvO/dt = -1 = min, then this 

control [I0 is optimal. 

Proof. According to Lemna 4.1 the control U” is permissible. i-et us 

assume the contrary, namely, that this control U” is not optimal, and 

consequently there is a pennissible control U*for which 

7’ PI < T V’l (4.7) 

at least for one point xO,~O, to, whereby 

( > dTu*>-l (4.8) 

let us consider the process of control under the given initial con- 

ditions x,,, ‘lo, t,,, and let us denote by up and up * the corresponding 

mathematical expectancies (computed at t = t,) of the random functions 
u“(t) and d’*(t), corresponding to controls U” and U*, for those values 

x(t) and x*(t) for which u“(t) > 0 and uO*(t) > 0. From conditions 

(dY[ 8l/dt+,o= - 1 and dvO/dt = - 1 at x = 0, and also from (4.8) follow 

the conditions 

dvto 

i > -z- dt=+O 
= - p [UO, n, 0, qy qo, to, 4 (4.9) 

(We assume that these derivatives are meaningful and that relations (4.9) 
are integrable). 

From conditions (4.9) it follows that 

T [U’] = v” (to), T v* I > v” 00) (4.10) 
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which contradict (4.7). 

Theorems 4.1 and 4.2 indicate the application of the second method of 

Liapunov to optimal problems. It should be noted, however, than an 

effective construction of the optiaann Liapunov function u(n, 7, t) is 

difficult. If one assumes that in the neighborhood of some point x, q, t 
the function v is differentiable with respect to xi and t, then condition 

(4.5) leads to a partial differential equation which must be satisfied 

by the generalized Liapunov function. For example, if the random function 

7 (t 1 assumes m values q 1, l **, 7.8 satisfying the limitation (2;2) where- 

by the probability p j(A t ) of the transformation q l+ ‘Ij( 2 f j) on the 
interval (t, t + At ! is determined by the conditions 

plj (At) = pljAt + 0 (At) (pI j = const) (4.11) 

then condition (4.5) leads to the equalities 

+ 21 Plk [v” (2, qk, t) -v” (2, rjl, t,]] = - 1 npn 11 u II < 1 (I = 1, . . . , nz) 
k+l 

which can be considered as a system of I equations for m functions V, = 

Vo (x, q l, t). The difficulty of defining vl is connected, in particular, 

with the circumstance that it is required to find positive definite 

solutions vi of the syqem (4.12) for x # 0. 

Tn Section 5 we will consider. a case when the solution of the problem 

is facilitated by the fact that the optimal function u” (x, q, t) does 

not depend explicitly on 7 I. In Section 6 an approximate graphical method 
for constructing functions v” (n, 7, t) for a second order system is 

described. 

5. Optimal control for the case of white noise at system 
input. Let the random function q (t 1 describe white noise which we shall 

assume realized as a limiting case of a shot effect (random inpulses 

with dispersion a2 and mean density u distributed an axis t I for Y + 00 

and a’, = y = const [ 6 I . Assme that M ( q (t I 1 = 0. Since the considered 

random process q (t ) is white noise, the information about past realiza- 
tion of the signal does not play a role in the choice of control for the 

future, i.e. at each instant t and point x(t ) the U, should be chosen by 

the same rule as the optimal control in the absence of a random signal 

q(t>. 

Let US consider the application of Liapunov functions for this case. 

let matrix B in system (1.1) not be singular. It was shown in Reference 
19 1 that in this case for q = 0 there exists an optimal function of 
Liapunov rP<x), defined for all x and possessing for x f 0 continuous 
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partial derivatives. (In Reference 19 1 condition (4.2) is not proved 
for tP (x) but this condition cau be verified here). ‘lhe optiuxxx control 
Uox corresponds to the function v” (xl. If one computes dM1 cP1 /dt for 
the function Zp (x), then, on the strength of system (1. l), in the pre- 
sence of a random signal u(t) and penxissible control II, we will have 

(5.1) 

where x (t) is the randau function x(t) (l.l), generated by randaxr)(t) 
and u<tu). 

‘Ihe first SM is of the sane form as in the case of q(t) = 0. Utiliz- 
ing the properties of a shot effect, passed through a linear filter 
(l.l) [6 I, the equalityM{v(t)I- 0 as well as property (4.2) and the 
ability of continuous differentiation of v"(x), we can verify that the 
second sum on the right-hand side of (5.1) is equal to zero. 

6. In this section an approximate graphical u&hod is described for 
constructing au optimal Llapunov function V(L, y) for a second order 
systam (2, y-scalars). We shall follow the geometrical Interpretation of 
the Liapunov function indicated by Chetaev. 

k us consider the second order system 

dx 
Jj = PY + (1 - f4 u21 (Lg = - p @2x + &Y) + u1+ Pi U) ~‘3.1) 

corresponding to 

under conditions 

Consider only 

the optimal problem for equation 

f + a& + a,a: = u1+ T(t) (6.2) 

InK1 for [A= 1 (6.3) 

the case when q(t) can assusm two values q1 and q2, and 

the probability p, .(ql + 11 .) cm the interval (t, t + At 1 is of the form: 

Plj = P At + O(A& = co&&. 

Assume that the optimal generalized function vO(x, q, ~1) depends con- 
tinuously on the parameter p. In Reference [9 1, the continuous depend- 
ence of tP on p is proved for q = 0. Here we t&e this fact as a hypo- 
thesis. This is sensible, since in the course of construction the 
generalized Liapunov function v is obtained in any case such that it 
ensures the passing of the trajectory through the point x = y = 0 with 
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large probability for large t (see Lama 4.1). The sufficiency of the 
obtained response can be verified by the specific conditions of the 

problem. 

Lst us describe the construction of function 8. Divide the interval 
0 < p < 1 into n parts at points pa = 0, ccl, l **, cn = 1. For g0 = 0 

values u" (x, y, ql, p. ) and Sk, y, q2, pa) coincide and the level lines 

for function Sk, y, VI, cO1 are constructed by elementary means (see 

[91). 

Assume that on the surface xy in region D of possible deviations x, 
y, there are constructed level lines for functions u"(x, y, wI, ~'~1 aud 

u"(x, y, w2, cci). Ixt these level lines be constructed for values rP = 
const = kr,, where r0 is a sufficiently small positive constant K = 1, 
2, . . . Assume also that for function cP(x, y, ql, pi+ 1) there are con- 
structed level lines* u" = jro(j = 1, . . . . ml. We will describe the con- 
struction of level lines for 

If it is assmd that the function vO(x, y, ql, pi+ 1) in the 
neighborhood of point (x, y) is differentiable, then according to (4.121, 
at this point the following conditions must be satisfied 

-+- sly -Q) + UI] + P [V” (X3 Y7 7th Pi+11 - V” (X7 YP Ti3 Pi+1)1] = - 1 (6.4) 

We shall assume, in accordance with out hypothesis, that a small 

changeAP=Pi+l - cc. causes a small change in v". Having chosen a point 
x0, y0 on the line Ip t x, y, wI, pi+ 1) it is possible to obtain a point 
x1, yl, located on the line ~JO(X, y, wl, pi+ 1) = (a + l)ra l Ihe CO- 

ordinates xl, y1 are computed from 

where 

xl= x,, + k, Y, = yo + AY, (6.5) 

AXI= - ~0 (Pi+1 Yo + (I- Pi+l)ua’)/B 

AYI = - T~ (- Pi+1 &Po + QYo - rll) + U13/P 

p = - 1 - p Iv” (x09 Yo9 r,z, pi) - z” (207 Yo, q1, l-41 

l Level lines for u” = r 0 for all v” may be constructed assuming L = 
y = 0 on the right-hand side of system (6.1) and neglecting the trans- 
formation of q. Then the problem of line construction v = r. is solved 
elementarily. 
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and numbers uIo and azO are chosen by the condition that the scalar pro- 

duct ofvectors(n1*, ~,“(l-,ui)1 and(d~O(ro, yo, ~1, pi>/dy, ~u~(z,, 

YOU 7 1, Pi)/dx ’ at point no, y. is a minimum with respect to u1 and u2, 

U12 + u22 < 1. Having chosen a sufficiently large number of points Cv,, 

yo) on the curve u” = nr o , we shall obtain by this means sufficiently 

many points (x,, yl, ) 61 tP = (m + 1) r ,I. Connecting these points by a 

smooth curve, we will obtain* the line u” = (a + l)r ,, . Upon construction 

of the necessary n&r of level lines of v” (x, y, ql, c i + 1 1 one can 

analogously construct the level lines for u” (z, y, q2, pi 1) = const. 

‘Ihen we proceed to the construction of level lines for u Otx# 
and u” (x, y, q2, ~1 for p = 

YI rll, p) 
m + 2 etc. up to the value c = p,, = 1. ‘Ihis 

concludes the construction of level lines for Vo (x, y, vl, 1) and u” (x, 

y, q2, 1) on the surface xy. Having obtained the plot of these level 

lines, one can construct the switching line for the control function 

u,(t). Indeed, we will assume that the level lines for uO(x, y, TV, 1) 
are constructed on the first sheet of x, y surface, and the level lines 

for u” (u, yJ 72s 1) on a second one. ‘lbe curves on each sheet, connect- 

ing the points where the tangent to the level lines is parallel to axis 

Oy, will be the curves of switching: function u1 (x, y) will change sign 

only in passing through these curves (on a given sheet i.e., for given 

?j = q&Z = 1, 2)). Function u1 (t) will also change sign during the 

change of values 7 1, when the representing point (x, y ) passes from one 

sheet of surface xy to another one, whereby the surfaces xy on the 
various sheets correspond to this point in the regions of different 

signs of function u. 
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